THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016 Problem Set 2

1. Find the following limits.

(a)
$$\lim_{n \to \infty} \frac{3n^2 - 2n + 7}{2n^2 + 3}$$

(b) $\lim_{n \to \infty} \frac{-3n^2}{\sqrt[3]{27n^6 - 5n + 1}}$
(c) $\lim_{n \to \infty} \sqrt{4n^2 + n} - \sqrt{4n^2 - 1}$
(d) $\lim_{n \to \infty} \frac{\sin(2^n) + (-1)^n \cos(2^n)}{n^3}$ (Hint: Using the sandwich theorem)

2. Let $\{a_n\}$ be a sequence of positive real numbers, which is defined by

$$a_1 = 1$$
 and $a_n = \frac{12a_{n-1} + 12}{a_{n-1} + 13}$ for $n > 1$.

- (a) Prove that $a_n \leq 3$.
- (b) Prove that $\{a_n\}$ converges (i.e. $\lim_{n \to \infty} a_n$ exists) and hence find its limit.
- 3. (a) Prove that $\frac{2^n}{n!} \le \frac{4}{n}$ for all natural numbers $n \ge 2$. (b) Hence, show that $\lim_{n \to \infty} \frac{2^n}{n!} = 0$.
- 4. By considering $\frac{1}{\sqrt{n^2 + n}} \leq \frac{1}{\sqrt{n^2 + r}} \leq \frac{1}{\sqrt{n^2 + 1}}$ for $r = 1, 2, 3, \dots, n$ and the sandwich theorem, prove that

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

5. (Harder problem)

Let $\{x_n\}$ and $\{y_n\}$ be sequences of real numbers such that $x_1 = 2$ and $y_1 = 8$ and for $n = 1, 2, 3, \cdots$

$$x_{n+1} = \frac{x_n^2 y_n + x_n y_n^2}{x_n^2 + y_n^2}$$
 and $y_{n+1} = \frac{x_n^2 + y_n^2}{x_n + y_n}$

(a) Prove that $x_{n+1} - y_{n+1} = \frac{-(x_n^3 - y_n^3)(x_n - y_n)}{(x_n + y_n)(x_n^2 + y_n^2)}$ for all natural numbers *n*.

- (b) Show that 0 ≤ x_n ≤ y_n for all natural numbers n.
 Hence, prove that {x_n} is a monotonic increasing sequence and {y_n} is a monotonic decreasing sequence.
- (c) Prove that $\{x_n\}$ and $\{y_n\}$ converge and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$.
- (d) Prove that $x_n y_n$ is a constant and hence find $\lim_{n \to \infty} x_n$.