THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016
 Problem Set 2

1. Find the following limits.
(a) $\lim _{n \rightarrow \infty} \frac{3 n^{2}-2 n+7}{2 n^{2}+3}$
(b) $\lim _{n \rightarrow \infty} \frac{-3 n^{2}}{\sqrt[3]{27 n^{6}-5 n+1}}$
(c) $\lim _{n \rightarrow \infty} \sqrt{4 n^{2}+n}-\sqrt{4 n^{2}-1}$
(d) $\lim _{n \rightarrow \infty} \frac{\sin \left(2^{n}\right)+(-1)^{n} \cos \left(2^{n}\right)}{n^{3}} \quad$ (Hint: Using the sandwich theorem)
2. Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers, which is defined by

$$
a_{1}=1 \quad \text { and } \quad a_{n}=\frac{12 a_{n-1}+12}{a_{n-1}+13} \text { for } n>1 .
$$

(a) Prove that $a_{n} \leq 3$.
(b) Prove that $\left\{a_{n}\right\}$ converges (i.e. $\lim _{n \rightarrow \infty} a_{n}$ exists) and hence find its limit.
3. (a) Prove that $\frac{2^{n}}{n!} \leq \frac{4}{n}$ for all natural numbers $n \geq 2$.
(b) Hence, show that $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$.
4. By considering $\frac{1}{\sqrt{n^{2}+n}} \leq \frac{1}{\sqrt{n^{2}+r}} \leq \frac{1}{\sqrt{n^{2}+1}}$ for $r=1,2,3, \cdots, n$ and the sandwich theorem, prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right)=1
$$

5. (Harder problem)

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of real numbers such that $x_{1}=2$ and $y_{1}=8$ and for $n=1,2,3, \ldots$

$$
x_{n+1}=\frac{x_{n}^{2} y_{n}+x_{n} y_{n}^{2}}{x_{n}^{2}+y_{n}^{2}} \quad \text { and } \quad y_{n+1}=\frac{x_{n}^{2}+y_{n}^{2}}{x_{n}+y_{n}} .
$$

(a) Prove that $x_{n+1}-y_{n+1}=\frac{-\left(x_{n}^{3}-y_{n}^{3}\right)\left(x_{n}-y_{n}\right)}{\left(x_{n}+y_{n}\right)\left(x_{n}^{2}+y_{n}^{2}\right)}$ for all natural numbers n.
(b) Show that $0 \leq x_{n} \leq y_{n}$ for all natural numbers n.

Hence, prove that $\left\{x_{n}\right\}$ is a monotonic increasing sequence and $\left\{y_{n}\right\}$ is a monotonic decreasing sequence.
(c) Prove that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge and $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$.
(d) Prove that $x_{n} y_{n}$ is a constant and hence find $\lim _{n \rightarrow \infty} x_{n}$.

